RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis.

نویسندگان

  • Min Seuk Kim
  • Yu-Mi Yang
  • Aran Son
  • Yu Shun Tian
  • Syng-Ill Lee
  • Sang Won Kang
  • Shmuel Muallem
  • Dong Min Shin
چکیده

RANKL (receptor activator of NF-kappaB ligand) induces osteoclastogenesis by activating multiple signaling pathways in osteoclast precursor cells, chief among which is induction of long lasting oscillations in the intracellular concentration of Ca(2+) ([Ca(2+)](i)). The [Ca(2+)](i) oscillations activate calcineurin, which activates the transcription factor NFATc1. The pathway by which RANKL induces [Ca(2+)](i) oscillations and osteoclastogenesis is poorly understood. Here we report the discovery of a novel pathway induced by RANKL to cause a long lasting increase in reactive oxygen species (ROS) and [Ca(2+)](i) oscillations that is essential for differentiation of bone marrow-derived monocytes into osteoclasts. The pathway includes RANKL-mediated stimulation of Rac1 to generate ROS, which stimulate phospholipase Cgamma1 to evoke [Ca(2+)](i) oscillations by stimulating Ca(2+) release from the inositol 1,4,5-trisphosphate pool and STIM1-regulated Ca(2+) influx. Induction and activation of the pathway is observed only after 24-h stimulation with RANKL and lasts for at least 3 days. The physiological role of the pathway is demonstrated in mice with deletion of the Peroxiredoxin II gene and results in a mark increase is ROS and, consequently, a decrease in bone density. Moreover, bone marrow-derived monocytes in PrxII(-/-) primary culture show increased ROS and spontaneous [Ca(2+)](i) oscillations. These findings identify the primary RANKL-stimulated pathway to trigger the late stages of osteoclastogenesis and regulate bone resorption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation

Bone destructive diseases are common worldwide and are caused by dysregulation of osteoclast formation and activation. During osteoclastogenesis, reactive oxygen species (ROS) play a role in the intracellular signalling triggered by receptor activator of nuclear factor-κB ligand (RANKL) stimulation. Previously, we demonstrated that induction of antioxidant enzymes by Nrf2 activation using Nrf2-...

متن کامل

Activation of G Proteins by Aluminum Fluoride Enhances RANKL-Mediated Osteoclastogenesis

Receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular Ca(2+) mobilization in a form of oscillations, which plays essential roles by activating sequentially Ca(2+)/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether Ca(2+) mobilization which is evoked in RANKL-in...

متن کامل

NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways

Negative regulator of reactive oxygen species (NRROS) is known to repress ROS generation in phagocytes. In this study, we examined the roles of NRROS in both osteoclasts and osteoblasts. Our results demonstrate that NRROS negatively regulates the differentiation of osteoclasts, but not osteoblasts. Further, overexpression of NRROS in osteoclast precursor cells attenuates RANKL-induced osteoclas...

متن کامل

HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis.

The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs)...

متن کامل

Heme oxygenase-1 (HO-1)/carbon monoxide (CO) axis suppresses RANKL-induced osteoclastic differentiation by inhibiting redox-sensitive NF-κB activation

Heme oxygenase (HO-1) catalyzes heme to carbon monoxide (CO), biliverdin/bilirubin, and iron and is known to prevent the pathogenesis of several human diseases. We assessed the beneficial effect of heme degradation products on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL). Treatment of RAW264.7 cells with CORM-2 (a CO donor) and bilirubin, but not with iron, decreased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 10  شماره 

صفحات  -

تاریخ انتشار 2010